Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation.

نویسندگان

  • Hayden K Webb
  • Russell J Crawford
  • Tomoo Sawabe
  • Elena P Ivanova
چکیده

Plastic debris causes extensive damage to the marine environment, largely due to its ability to resist degradation. Attachment on plastic surfaces is a key initiation process for their degradation. The tendency of environmental marine bacteria to adhere to poly(ethylene terephthalate) (PET) plastic surfaces as a model material was investigated. It was found that the overall number of heterotrophic bacteria in a sample of sea water taken from St. Kilda Beach, Melbourne, Australia, was significantly reduced after six months from 4.2-4.7×10(3) cfu mL(-1) to below detectable levels on both full-strength and oligotrophic marine agar plates. The extinction of oligotrophs after six months was detected in all samples. In contrast, the overall bacterial number recovered on full strength marine agar from the sample flasks with PET did not dramatically reduce. Heterotrophic bacteria recovered on full-strength marine agar plates six months after the commencement of the experiment were found to have suitable metabolic activity to survive in sea water while attaching to the PET plastic surface followed by the commencement of biofilm formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compatibilization of polycarbonate/poly (ethylene terephthalate) blends by addition of their transesterification product

In this study, poly carbonate (PC) and poly (ethylene terephthalate) (PET) were reactive melt-blended under two different conditions to produce PC/PET copolymers. For each condition, samples were taken at specified mixing times representative a specific structure of copolymers and each one employed to physically compatibilize a PC/PET blend with a fixed composition. Reactive blending and copoly...

متن کامل

PET/Mica nanocomposites for food packaging: Crystallization behavior and mechanical properties

Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...

متن کامل

Tuning the Density of Poly(ethylene glycol) Chains to Control Mammalian Cell and Bacterial Attachment

Surface modification of biomaterials with polymer chains has attracted great attention because of their ability to control biointerfacial interactions such as protein adsorption, cell attachment and bacterial biofilm formation. The aim of this study was to control the immobilisation of biomolecules on silicon wafers using poly(ethylene glycol)(PEG) chains by a “grafting to” technique. In partic...

متن کامل

PET/Mica nanocomposites for food packaging: crystallization behavior and mechanical properties

Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...

متن کامل

PET/Mica nanocomposites for food packaging: Crystallization behavior and mechanical properties

Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbes and environments

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2009